/v1/label
Classify text content based on your custom criteria.
https://api.zentropi.ai
Authorization: Bearer your_api_key_here
Field | Type | Required | Description |
---|---|---|---|
content_text |
string | Yes | The text content to be labeled |
criteria_text |
string | No | The labeling criteria to use. Either criteria_text OR labeler_id is required. |
labeler_id |
string | No | The ID of the labeler to use. Either criteria_text OR labeler_id is required. |
labeler_version_id |
string | No | The ID of which deployed version to use. Required if labeler_id is set. Default: "latest" |
model |
string | No | Model to use for evaluation. Default: "cope-latest" |
Field | Type | Description |
---|---|---|
label |
string | The classification result ("0" or "1") |
confidence |
float | Confidence score for the classification (0.5 to 1.0) |
compute_time |
float | Time taken to process the request in seconds |
{
"label": "1",
"confidence": 0.87,
"compute_time": 0.324
}
import requests ZAPI_KEY = "your_api_key_here" ZAPI_URL = "https://api.zentropi.ai/v1/label" # Label content using Zentropi content_text = "This is some text to analyze" criteria_text = "This is your labeling criteria" response = requests.post( ZAPI_URL, headers={"Authorization": f"Bearer {ZAPI_KEY}"}, json={ "content_text": content_text, "criteria_text": criteria_text, } ) result = response.json() print(f"Label: {result['label']}") print(f"Confidence: {result['confidence']}") # Example output: # Label: 1 # Confidence: 0.85
const ZAPI_KEY = "your_api_key_here"; const ZAPI_URL = "https://api.zentropi.ai/v1/label"; // Label content using Z-API const labelContent = async () => { const response = await fetch(ZAPI_URL, { method: "POST", headers: { "Authorization": `Bearer ${ZAPI_KEY}`, "Content-Type": "application/json" }, body: JSON.stringify({ content_text: "This is some text to analyze", criteria_text: "This is your labeling criteria" }) }); const result = await response.json(); console.log(`Label: ${result.label}`); console.log(`Confidence: ${result.confidence}`); }; labelContent(); // Example output: // Label: 1 // Confidence: 0.85